
9. NUMERICAL TECHNIQUES 

Abstract — A numerical method for waveguide eigenvalue 
problems is presented using local discontinuous Galerkin 
(LDG) method based on polar coordinates. The method has 
the merit of avoiding geometrical triangulation errors on 
curved boundaries of the domain. High order accurate LDG 
method can be used with the proposed methodology because 
the proposed algorithm can be designed to cater for any order 
of accuracy. As an illustration, the formulation of the LDG 
scheme in polar coordinates is derived and several numerical 
examples are presented. Numerical results show that the 
proposed LDG method can solve waveguide eigenvalue 
problems accurately. 

I. INTRODUCTION 

The design of algorithms to compute, accurately, the 
waveguide eigenvalue of electromagnetics is a very topical 
challenge for researchers [1-3]. In practice, circular 
waveguide is very common and for the case being studied 
and report in this paper. The domain of waveguide 
eigenvalue problem is a disk with curvilinear boundary. It 
can be shown that with the use of traditional finite element 
method, geometrical errors are introduced when the curved 
boundary is approximated with piecewise line segments, 
thus the application of high order numerical method is 
limited. It has been reported in [4] that the observed 
convergence rate of the maximum norm, when using LDG 
method for the numerical solution of Laplace eigenvalue 
problem, is 2k when the k-th order finite element space is 
used. This implies that it is possible to obtain accurate 
numerical solution on a coarse mesh. In this paper a LDG 
method in polar coordinates is presented in order to obtain     
an accurate numerical solution of the waveguide eigenvalue 
problem which is defined in either circular domain or fan-
shaped domain [5-6]. 

II. LDG SCHEME 

Consider the following Helmholtz boundary value 
problem in polar coordinates: 
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where;   is bounded in 2R ; 21   ; u  is the 

unknown potential function; hg,  are known functions; ck  

is the waveguide eigenvalue to be solved numerically. 

For illustration, define  as a bounded region in 2R ; T  
is a triangulation of  ; h  is the maximum side length of 
the triangulation. Define the k-th order discontinuous finite 
element space as:  
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Take any two neighboring elements K  and K  from 

T , and the common side   KK  , n


 and n


 are 

the unit outward normal vectors from the interior of K  

and K  at any point of  , respectively. Let w  be the trace 

of w  from the interior of K . Define }}{{ , ]][[  as the 

respective average and jump of related function at x as: 
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Rewrite the partial differential equation in (1) as 
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Then the LDG scheme for (1) reads [7] 
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for any hh VVvw  2),(


; where hû  and hq̂  are the 

numerical fluxes which are defined by 
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in the interior of the domain whereas 



























2

1

2

111

on,

on,
ˆ

on,

on,)(ˆ

h
h

hh
h

u

g
u

h

nguCq
q



   ,                 (7) 

are defined on the boundary of the domain  ; where 

)/1(11 hOC   and 12C


 are vectors in 2R  of length 2/1 . 

In the following example, the waveguide eigenvalue 
problem is solved for both TE mode and TM mode. In the 
case of TM mode, the boundary condition is: 

0:  u .                                      (8) 
In the TE mode, the boundary condition is:  

0/:  nu .                                 (9) 
As the numerical flux hû does not depend on q


, so after 

discretizing (1) using the LDG method, the unknowns about 
q


 can be eliminated from the derived linear algebraic 

equation. The generalized eigenvalue problem is therefore 

MukLu c
2 ,                                  (10) 

which can be solved by calling the solvers. 
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III. NUMERICAL RESULTS 

In this section, the numerical results of two examples are 
illustrated using the 4-th order LDG method. The 
computational mesh numbers in ),( r  are given in the titles 

of the tables below. It can be seen that accurate eigenvelue 
can be obtained using high order LDG method with a 
coarse mesh. 

Example I is a circular waveguide eigenvalue problem in 
both TM mode and TE mode. In the case being studied, the 
exact eigenvalue can be obtained by finding the zeros of the 
Bessel function of the first kind. 

 
TABLE I 

EIGEN VALUES OF EXAMPLE I IN TM MODE (5×10) 

# Numerical solution Exact solution 
1 2.40482555769731 2.40482555769577 
2 3.83170602101311 3.83170597020751 
3 5.13562612644477 5.13562230184068 
4 5.52007811318256 5.52007811028631 

 
TABLE II 

EIGEN VALUES OF EXAMPLE I IN TE MODE (5×10) 

# Numerical solution Exact solution 
1 1.84118378883568 1.84118378134066 
2 3.05423806089708 3.05423692822714 
3 3.83170597034596 3.83170597020751 
4 4.20121034061308 4.20118894121053 

 
Examples II and III are sector waveguide eigenvalue 

problems in both TM mode and TE mode, where the central 
angle of the sector are taken to be 2/  and 2/3 , 
respectively. As the analytical exact eigenvalues are not 
easy to obtain in both cases, hence the numerical solutions 
in [5] are used for reference. 

 
TABLE III 

EIGEN VALUES OF EXAMPLES II, III IN TM MODE (5×10) 

# Numerical solution Reference solution [5] 
Central angle = 2/  

1 5.13562236681274 5.1413 
2 7.58834446643681 7.6027 
3 8.41724661329691 8.4758 
4 9.93612744395106 9.9755 

Central angle = 2/3  
1 3.37487023849970 3.3755 
2 4.27533749576592 4.2772 
3 5.13562341195871 5.1411 
4 5.97014468913302 5.9864 

 
TABLE IV 

EIGEN VALUES OF EXAMPLES II, III IN TE MODE (5×5) 

# Numerical solution Reference solution [5] 
Central angle = 2/  

1 3.05423697056096 3.0549 
2 3.83170597041761 3.8386 
3 5.31755803154267 5.3276 
4 6.70613666189395 6.7142 

Central angle = 2/3  
1 1.40089061563629 1.4012 
2 2.25775440817062 2.2613 
3 3.05423716978195 3.0827 
4 3.82322572156638 3.8326 

 

Fig. 1 shows the computed eigenvectors corresponding to 
the eigenvalues of the TM mode of Example II (multiple 
eigenvectors are plotted separately). 

 

   
Eigenvector of #1                     Eigenvector of #2(1) 
 
 

   
Eigenvector of #2(2)                  Eigenvector of #3(1) 
 

                

   
Eigenvector of #3(2)                   Eigenvector of #4 

Fig. 1. First 6 eigenvectors of Example I in TM mode. 
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